Metamath Proof Explorer


Theorem eliooord

Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008) (Revised by Mario Carneiro, 9-May-2014)

Ref Expression
Assertion eliooord ABCB<AA<C

Proof

Step Hyp Ref Expression
1 eliooxr ABCB*C*
2 elioo2 B*C*ABCAB<AA<C
3 1 2 syl ABCABCAB<AA<C
4 3 ibi ABCAB<AA<C
5 3simpc AB<AA<CB<AA<C
6 4 5 syl ABCB<AA<C