Metamath Proof Explorer


Theorem elioo4g

Description: Membership in an open interval of extended reals. (Contributed by NM, 8-Jun-2007) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion elioo4g CABA*B*CA<CC<B

Proof

Step Hyp Ref Expression
1 eliooxr CABA*B*
2 elioore CABC
3 1 2 jca CABA*B*C
4 df-3an A*B*CA*B*C
5 3 4 sylibr CABA*B*C
6 eliooord CABA<CC<B
7 5 6 jca CABA*B*CA<CC<B
8 rexr CC*
9 8 3anim3i A*B*CA*B*C*
10 9 anim1i A*B*CA<CC<BA*B*C*A<CC<B
11 elioo3g CABA*B*C*A<CC<B
12 10 11 sylibr A*B*CA<CC<BCAB
13 7 12 impbii CABA*B*CA<CC<B