Metamath Proof Explorer


Theorem elmapd

Description: Deduction form of elmapg . (Contributed by BJ, 11-Apr-2020)

Ref Expression
Hypotheses elmapd.a φAV
elmapd.b φBW
Assertion elmapd φCABC:BA

Proof

Step Hyp Ref Expression
1 elmapd.a φAV
2 elmapd.b φBW
3 elmapg AVBWCABC:BA
4 1 2 3 syl2anc φCABC:BA