Description: Two ways to say a set is an element of mapped intersection of a class. Here F maps elements of C to elements of |^| { x | ph } or x . (Contributed by RP, 19-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elmapintab.1 | |
|
elmapintab.2 | |
||
Assertion | elmapintab | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapintab.1 | |
|
2 | elmapintab.2 | |
|
3 | fvex | |
|
4 | 3 | elintab | |
5 | 4 | anbi2i | |
6 | 2 | baibr | |
7 | 6 | imbi2d | |
8 | 7 | albidv | |
9 | 8 | pm5.32i | |
10 | 1 5 9 | 3bitri | |