Metamath Proof Explorer


Theorem elmapintab

Description: Two ways to say a set is an element of mapped intersection of a class. Here F maps elements of C to elements of |^| { x | ph } or x . (Contributed by RP, 19-Aug-2020)

Ref Expression
Hypotheses elmapintab.1 ABACFAx|φ
elmapintab.2 AEACFAx
Assertion elmapintab ABACxφAE

Proof

Step Hyp Ref Expression
1 elmapintab.1 ABACFAx|φ
2 elmapintab.2 AEACFAx
3 fvex FAV
4 3 elintab FAx|φxφFAx
5 4 anbi2i ACFAx|φACxφFAx
6 2 baibr ACFAxAE
7 6 imbi2d ACφFAxφAE
8 7 albidv ACxφFAxxφAE
9 8 pm5.32i ACxφFAxACxφAE
10 1 5 9 3bitri ABACxφAE