Metamath Proof Explorer


Theorem elmaprd

Description: Deduction associated with elmapd . Reverse direction of elmapdd . (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses elmaprd.1 φ A V
elmaprd.2 φ B W
elmaprd.3 φ F B A
Assertion elmaprd φ F : A B

Proof

Step Hyp Ref Expression
1 elmaprd.1 φ A V
2 elmaprd.2 φ B W
3 elmaprd.3 φ F B A
4 2 1 elmapd φ F B A F : A B
5 3 4 mpbid φ F : A B