Metamath Proof Explorer
Description: Deduction associated with elmapd . Reverse direction of elmapdd .
(Contributed by Thierry Arnoux, 13-Oct-2025)
|
|
Ref |
Expression |
|
Hypotheses |
elmaprd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
|
|
elmaprd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
|
|
elmaprd.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ) |
|
Assertion |
elmaprd |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elmaprd.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
elmaprd.2 |
⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) |
| 3 |
|
elmaprd.3 |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ) |
| 4 |
2 1
|
elmapd |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝐹 : 𝐴 ⟶ 𝐵 ) ) |
| 5 |
3 4
|
mpbid |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |