Metamath Proof Explorer


Theorem elmaprd

Description: Deduction associated with elmapd . Reverse direction of elmapdd . (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses elmaprd.1 ( 𝜑𝐴𝑉 )
elmaprd.2 ( 𝜑𝐵𝑊 )
elmaprd.3 ( 𝜑𝐹 ∈ ( 𝐵m 𝐴 ) )
Assertion elmaprd ( 𝜑𝐹 : 𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 elmaprd.1 ( 𝜑𝐴𝑉 )
2 elmaprd.2 ( 𝜑𝐵𝑊 )
3 elmaprd.3 ( 𝜑𝐹 ∈ ( 𝐵m 𝐴 ) )
4 2 1 elmapd ( 𝜑 → ( 𝐹 ∈ ( 𝐵m 𝐴 ) ↔ 𝐹 : 𝐴𝐵 ) )
5 3 4 mpbid ( 𝜑𝐹 : 𝐴𝐵 )