Description: Deduction associated with elmapd . Reverse direction of elmapdd . (Contributed by Thierry Arnoux, 13-Oct-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmaprd.1 | |- ( ph -> A e. V ) |
|
| elmaprd.2 | |- ( ph -> B e. W ) |
||
| elmaprd.3 | |- ( ph -> F e. ( B ^m A ) ) |
||
| Assertion | elmaprd | |- ( ph -> F : A --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmaprd.1 | |- ( ph -> A e. V ) |
|
| 2 | elmaprd.2 | |- ( ph -> B e. W ) |
|
| 3 | elmaprd.3 | |- ( ph -> F e. ( B ^m A ) ) |
|
| 4 | 2 1 | elmapd | |- ( ph -> ( F e. ( B ^m A ) <-> F : A --> B ) ) |
| 5 | 3 4 | mpbid | |- ( ph -> F : A --> B ) |