Metamath Proof Explorer


Theorem elmaprd

Description: Deduction associated with elmapd . Reverse direction of elmapdd . (Contributed by Thierry Arnoux, 13-Oct-2025)

Ref Expression
Hypotheses elmaprd.1
|- ( ph -> A e. V )
elmaprd.2
|- ( ph -> B e. W )
elmaprd.3
|- ( ph -> F e. ( B ^m A ) )
Assertion elmaprd
|- ( ph -> F : A --> B )

Proof

Step Hyp Ref Expression
1 elmaprd.1
 |-  ( ph -> A e. V )
2 elmaprd.2
 |-  ( ph -> B e. W )
3 elmaprd.3
 |-  ( ph -> F e. ( B ^m A ) )
4 2 1 elmapd
 |-  ( ph -> ( F e. ( B ^m A ) <-> F : A --> B ) )
5 3 4 mpbid
 |-  ( ph -> F : A --> B )