Metamath Proof Explorer


Theorem elnn1uz2

Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012)

Ref Expression
Assertion elnn1uz2 NN=1N2

Proof

Step Hyp Ref Expression
1 eluz2b3 N2NN1
2 1 orbi2i N=1N2N=1NN1
3 exmidne N=1N1
4 ordi N=1NN1N=1NN=1N1
5 3 4 mpbiran2 N=1NN1N=1N
6 1nn 1
7 eleq1 N=1N1
8 6 7 mpbiri N=1N
9 pm2.621 N=1NN=1NN
10 8 9 ax-mp N=1NN
11 olc NN=1N
12 10 11 impbii N=1NN
13 2 5 12 3bitrri NN=1N2