Metamath Proof Explorer


Theorem uz2mulcl

Description: Closure of multiplication of integers greater than or equal to 2. (Contributed by Paul Chapman, 26-Oct-2012)

Ref Expression
Assertion uz2mulcl M2N2 M N2

Proof

Step Hyp Ref Expression
1 eluzelz M2M
2 eluzelz N2N
3 zmulcl MN M N
4 1 2 3 syl2an M2N2 M N
5 eluz2b1 M2M1<M
6 zre MM
7 6 anim1i M1<MM1<M
8 5 7 sylbi M2M1<M
9 eluz2b1 N2N1<N
10 zre NN
11 10 anim1i N1<NN1<N
12 9 11 sylbi N2N1<N
13 mulgt1 MN1<M1<N1< M N
14 13 an4s M1<MN1<N1< M N
15 8 12 14 syl2an M2N21< M N
16 eluz2b1 M N2 M N1< M N
17 4 15 16 sylanbrc M2N2 M N2