Metamath Proof Explorer


Theorem indstr2

Description: Strong Mathematical Induction for positive integers (inference schema). The first two hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 21-Nov-2012)

Ref Expression
Hypotheses indstr2.1 x=1φχ
indstr2.2 x=yφψ
indstr2.3 χ
indstr2.4 x2yy<xψφ
Assertion indstr2 xφ

Proof

Step Hyp Ref Expression
1 indstr2.1 x=1φχ
2 indstr2.2 x=yφψ
3 indstr2.3 χ
4 indstr2.4 x2yy<xψφ
5 elnn1uz2 xx=1x2
6 nnnlt1 y¬y<1
7 6 adantl x=1y¬y<1
8 breq2 x=1y<xy<1
9 8 adantr x=1yy<xy<1
10 7 9 mtbird x=1y¬y<x
11 10 pm2.21d x=1yy<xψ
12 11 ralrimiva x=1yy<xψ
13 pm5.5 yy<xψyy<xψφφ
14 12 13 syl x=1yy<xψφφ
15 14 1 bitrd x=1yy<xψφχ
16 3 15 mpbiri x=1yy<xψφ
17 16 4 jaoi x=1x2yy<xψφ
18 5 17 sylbi xyy<xψφ
19 2 18 indstr xφ