Metamath Proof Explorer


Theorem elong

Description: An ordinal number is an ordinal set. (Contributed by NM, 5-Jun-1994)

Ref Expression
Assertion elong AVAOnOrdA

Proof

Step Hyp Ref Expression
1 ordeq x=AOrdxOrdA
2 df-on On=x|Ordx
3 1 2 elab2g AVAOnOrdA