Metamath Proof Explorer


Theorem elopg

Description: Characterization of the elements of an ordered pair. Closed form of elop . (Contributed by BJ, 22-Jun-2019) (Avoid depending on this detail.)

Ref Expression
Assertion elopg AVBWCABC=AC=AB

Proof

Step Hyp Ref Expression
1 dfopg AVBWAB=AAB
2 eleq2 AB=AABCABCAAB
3 snex AV
4 prex ABV
5 3 4 elpr2 CAABC=AC=AB
6 2 5 bitrdi AB=AABCABC=AC=AB
7 1 6 syl AVBWCABC=AC=AB