Metamath Proof Explorer


Theorem elpglem1

Description: Lemma for elpg . (Contributed by Emmett Weisz, 28-Aug-2021)

Ref Expression
Assertion elpglem1 x x Pg 1 st A 𝒫 x 2 nd A 𝒫 x 1 st A Pg 2 nd A Pg

Proof

Step Hyp Ref Expression
1 elpwi 1 st A 𝒫 x 1 st A x
2 1 adantl x Pg 1 st A 𝒫 x 1 st A x
3 simpl x Pg 1 st A 𝒫 x x Pg
4 2 3 sstrd x Pg 1 st A 𝒫 x 1 st A Pg
5 elpwi 2 nd A 𝒫 x 2 nd A x
6 5 adantl x Pg 2 nd A 𝒫 x 2 nd A x
7 simpl x Pg 2 nd A 𝒫 x x Pg
8 6 7 sstrd x Pg 2 nd A 𝒫 x 2 nd A Pg
9 4 8 anim12dan x Pg 1 st A 𝒫 x 2 nd A 𝒫 x 1 st A Pg 2 nd A Pg
10 9 exlimiv x x Pg 1 st A 𝒫 x 2 nd A 𝒫 x 1 st A Pg 2 nd A Pg