Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Emmett Weisz
Construction of Games and Surreal Numbers
elpglem1
Next ⟩
elpglem2
Metamath Proof Explorer
Ascii
Unicode
Theorem
elpglem1
Description:
Lemma for
elpg
.
(Contributed by
Emmett Weisz
, 28-Aug-2021)
Ref
Expression
Assertion
elpglem1
⊢
∃
x
x
⊆
Pg
∧
1
st
⁡
A
∈
𝒫
x
∧
2
nd
⁡
A
∈
𝒫
x
→
1
st
⁡
A
⊆
Pg
∧
2
nd
⁡
A
⊆
Pg
Proof
Step
Hyp
Ref
Expression
1
elpwi
⊢
1
st
⁡
A
∈
𝒫
x
→
1
st
⁡
A
⊆
x
2
1
adantl
⊢
x
⊆
Pg
∧
1
st
⁡
A
∈
𝒫
x
→
1
st
⁡
A
⊆
x
3
simpl
⊢
x
⊆
Pg
∧
1
st
⁡
A
∈
𝒫
x
→
x
⊆
Pg
4
2
3
sstrd
⊢
x
⊆
Pg
∧
1
st
⁡
A
∈
𝒫
x
→
1
st
⁡
A
⊆
Pg
5
elpwi
⊢
2
nd
⁡
A
∈
𝒫
x
→
2
nd
⁡
A
⊆
x
6
5
adantl
⊢
x
⊆
Pg
∧
2
nd
⁡
A
∈
𝒫
x
→
2
nd
⁡
A
⊆
x
7
simpl
⊢
x
⊆
Pg
∧
2
nd
⁡
A
∈
𝒫
x
→
x
⊆
Pg
8
6
7
sstrd
⊢
x
⊆
Pg
∧
2
nd
⁡
A
∈
𝒫
x
→
2
nd
⁡
A
⊆
Pg
9
4
8
anim12dan
⊢
x
⊆
Pg
∧
1
st
⁡
A
∈
𝒫
x
∧
2
nd
⁡
A
∈
𝒫
x
→
1
st
⁡
A
⊆
Pg
∧
2
nd
⁡
A
⊆
Pg
10
9
exlimiv
⊢
∃
x
x
⊆
Pg
∧
1
st
⁡
A
∈
𝒫
x
∧
2
nd
⁡
A
∈
𝒫
x
→
1
st
⁡
A
⊆
Pg
∧
2
nd
⁡
A
⊆
Pg