Metamath Proof Explorer


Theorem elpred

Description: Membership in a predecessor class. (Contributed by Scott Fenton, 4-Feb-2011) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Hypothesis elpred.1 YV
Assertion elpred XDYPredRAXYAYRX

Proof

Step Hyp Ref Expression
1 elpred.1 YV
2 elpredgg XDYVYPredRAXYAYRX
3 1 2 mpan2 XDYPredRAXYAYRX