Metamath Proof Explorer


Theorem elpredimg

Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012) Generalize to closed form. (Revised by BJ, 16-Oct-2024)

Ref Expression
Assertion elpredimg XVYPredRAXYRX

Proof

Step Hyp Ref Expression
1 elpredgg XVYPredRAXYPredRAXYAYRX
2 simpr YAYRXYRX
3 1 2 syl6bi XVYPredRAXYPredRAXYRX
4 3 syldbl2 XVYPredRAXYRX