Metamath Proof Explorer


Theorem elpreqprlem

Description: Lemma for elpreqpr . (Contributed by Scott Fenton, 7-Dec-2020) (Revised by AV, 9-Dec-2020)

Ref Expression
Assertion elpreqprlem BVxBC=Bx

Proof

Step Hyp Ref Expression
1 eqid BC=BC
2 preq2 x=CBx=BC
3 2 eqeq2d x=CBC=BxBC=BC
4 3 spcegv CVBC=BCxBC=Bx
5 1 4 mpi CVxBC=Bx
6 5 a1d CVBVxBC=Bx
7 dfsn2 B=BB
8 preq2 x=BBx=BB
9 8 eqeq2d x=BB=BxB=BB
10 9 spcegv BVB=BBxB=Bx
11 7 10 mpi BVxB=Bx
12 prprc2 ¬CVBC=B
13 12 eqeq1d ¬CVBC=BxB=Bx
14 13 exbidv ¬CVxBC=BxxB=Bx
15 11 14 imbitrrid ¬CVBVxBC=Bx
16 6 15 pm2.61i BVxBC=Bx