Metamath Proof Explorer


Theorem elrab2

Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006)

Ref Expression
Hypotheses elrab2.1 x=Aφψ
elrab2.2 C=xB|φ
Assertion elrab2 ACABψ

Proof

Step Hyp Ref Expression
1 elrab2.1 x=Aφψ
2 elrab2.2 C=xB|φ
3 2 eleq2i ACAxB|φ
4 1 elrab AxB|φABψ
5 3 4 bitri ACABψ