Metamath Proof Explorer


Theorem elrabi

Description: Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017) Remove disjoint variable condition on A , x and avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Aug-2024)

Ref Expression
Assertion elrabi AxV|φAV

Proof

Step Hyp Ref Expression
1 dfclel Ax|xVφyy=Ayx|xVφ
2 df-clab yx|xVφyxxVφ
3 simpl xVφxV
4 3 sbimi yxxVφyxxV
5 clelsb1 yxxVyV
6 4 5 sylib yxxVφyV
7 2 6 sylbi yx|xVφyV
8 eleq1 y=AyVAV
9 8 biimpa y=AyVAV
10 7 9 sylan2 y=Ayx|xVφAV
11 10 exlimiv yy=Ayx|xVφAV
12 1 11 sylbi Ax|xVφAV
13 df-rab xV|φ=x|xVφ
14 12 13 eleq2s AxV|φAV