Metamath Proof Explorer


Theorem elrelimasn

Description: Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015)

Ref Expression
Assertion elrelimasn RelRBRAARB

Proof

Step Hyp Ref Expression
1 relimasn RelRRA=x|ARx
2 1 eleq2d RelRBRABx|ARx
3 brrelex2 RelRARBBV
4 3 ex RelRARBBV
5 breq2 x=BARxARB
6 5 elab3g ARBBVBx|ARxARB
7 4 6 syl RelRBx|ARxARB
8 2 7 bitrd RelRBRAARB