Metamath Proof Explorer


Theorem elrid

Description: Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022) (Proof shortened by Peter Mazsa, 9-Sep-2022)

Ref Expression
Assertion elrid AIXxXA=xx

Proof

Step Hyp Ref Expression
1 df-res IX=IX×V
2 1 eleq2i AIXAIX×V
3 elidinxp AIX×VxXVA=xx
4 inv1 XV=X
5 4 rexeqi xXVA=xxxXA=xx
6 2 3 5 3bitri AIXxXA=xx