Metamath Proof Explorer


Theorem elrn2

Description: Membership in a range. (Contributed by NM, 10-Jul-1994)

Ref Expression
Hypothesis elrn.1 AV
Assertion elrn2 AranBxxAB

Proof

Step Hyp Ref Expression
1 elrn.1 AV
2 elrn2g AVAranBxxAB
3 1 2 ax-mp AranBxxAB