Metamath Proof Explorer


Theorem elrngchomALTV

Description: A morphism of non-unital rings is a function. (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C = RngCatALTV U
rngcbasALTV.b B = Base C
rngcbasALTV.u φ U V
rngchomfvalALTV.h H = Hom C
rngchomALTV.x φ X B
rngchomALTV.y φ Y B
Assertion elrngchomALTV φ F X H Y F : Base X Base Y

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C = RngCatALTV U
2 rngcbasALTV.b B = Base C
3 rngcbasALTV.u φ U V
4 rngchomfvalALTV.h H = Hom C
5 rngchomALTV.x φ X B
6 rngchomALTV.y φ Y B
7 1 2 3 4 5 6 rngchomALTV φ X H Y = X RngHomo Y
8 7 eleq2d φ F X H Y F X RngHomo Y
9 eqid Base X = Base X
10 eqid Base Y = Base Y
11 9 10 rnghmf F X RngHomo Y F : Base X Base Y
12 8 11 syl6bi φ F X H Y F : Base X Base Y