Metamath Proof Explorer


Theorem elrnmpt1d

Description: Elementhood in an image set. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses elrnmpt1d.1 F=xAB
elrnmpt1d.2 φxA
elrnmpt1d.3 φBV
Assertion elrnmpt1d φBranF

Proof

Step Hyp Ref Expression
1 elrnmpt1d.1 F=xAB
2 elrnmpt1d.2 φxA
3 elrnmpt1d.3 φBV
4 1 elrnmpt1 xABVBranF
5 2 3 4 syl2anc φBranF