Metamath Proof Explorer


Theorem elspansn5

Description: A vector belonging to both a subspace and the span of the singleton of a vector not in it must be zero. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn5 ASB¬BACspanBCAC=0

Proof

Step Hyp Ref Expression
1 elspansn4 ASBCspanBC0BACA
2 1 biimprd ASBCspanBC0CABA
3 2 exp32 ASBCspanBC0CABA
4 3 com34 ASBCspanBCAC0BA
5 4 imp32 ASBCspanBCAC0BA
6 5 necon1bd ASBCspanBCA¬BAC=0
7 6 exp31 ASBCspanBCA¬BAC=0
8 7 com34 ASB¬BACspanBCAC=0
9 8 imp4c ASB¬BACspanBCAC=0