Metamath Proof Explorer


Theorem elspansn4

Description: A span membership condition implying two vectors belong to the same subspace. (Contributed by NM, 17-Dec-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn4 ASBCspanBC0BACA

Proof

Step Hyp Ref Expression
1 elspansn3 ASBACspanBCA
2 1 3exp ASBACspanBCA
3 2 com23 ASCspanBBACA
4 3 imp ASCspanBBACA
5 4 ad2ant2r ASBCspanBC0BACA
6 spansnid BBspanB
7 6 ad2antrr BC0CspanBBspanB
8 spansneleq BC0CspanBspanC=spanB
9 8 imp BC0CspanBspanC=spanB
10 7 9 eleqtrrd BC0CspanBBspanC
11 elspansn3 ASCABspanCBA
12 11 3expia ASCABspanCBA
13 10 12 syl5 ASCABC0CspanBBA
14 13 exp4b ASCABC0CspanBBA
15 14 com24 ASCspanBBC0CABA
16 15 exp4a ASCspanBBC0CABA
17 16 com23 ASBCspanBC0CABA
18 17 imp43 ASBCspanBC0CABA
19 5 18 impbid ASBCspanBC0BACA