Metamath Proof Explorer


Theorem elssabg

Description: Membership in a class abstraction involving a subset. Unlike elabg , A does not have to be a set. (Contributed by NM, 29-Aug-2006)

Ref Expression
Hypothesis elssabg.1 x=Aφψ
Assertion elssabg BVAx|xBφABψ

Proof

Step Hyp Ref Expression
1 elssabg.1 x=Aφψ
2 ssexg ABBVAV
3 2 expcom BVABAV
4 3 adantrd BVABψAV
5 sseq1 x=AxBAB
6 5 1 anbi12d x=AxBφABψ
7 6 elab3g ABψAVAx|xBφABψ
8 4 7 syl BVAx|xBφABψ