Metamath Proof Explorer


Theorem eluz2nn

Description: An integer greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018)

Ref Expression
Assertion eluz2nn A2A

Proof

Step Hyp Ref Expression
1 1z 1
2 1le2 12
3 eluzuzle 112A2A1
4 1 2 3 mp2an A2A1
5 nnuz =1
6 4 5 eleqtrrdi A2A