Metamath Proof Explorer


Theorem eluzaddOLD

Description: Obsolete version of eluzadd as of 7-Feb-2025. (Contributed by Jeff Madsen, 2-Sep-2009) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion eluzaddOLD NMKN+KM+K

Proof

Step Hyp Ref Expression
1 eluzel2 NMM
2 fveq2 M=ifMM0M=ifMM0
3 2 eleq2d M=ifMM0NMNifMM0
4 fvoveq1 M=ifMM0M+K=ifMM0+K
5 4 eleq2d M=ifMM0N+KM+KN+KifMM0+K
6 3 5 imbi12d M=ifMM0NMN+KM+KNifMM0N+KifMM0+K
7 oveq2 K=ifKK0N+K=N+ifKK0
8 oveq2 K=ifKK0ifMM0+K=ifMM0+ifKK0
9 8 fveq2d K=ifKK0ifMM0+K=ifMM0+ifKK0
10 7 9 eleq12d K=ifKK0N+KifMM0+KN+ifKK0ifMM0+ifKK0
11 10 imbi2d K=ifKK0NifMM0N+KifMM0+KNifMM0N+ifKK0ifMM0+ifKK0
12 0z 0
13 12 elimel ifKK0
14 13 eluzaddi NifMM0N+ifKK0ifMM0+ifKK0
15 6 11 14 dedth2h MKNMN+KM+K
16 15 com12 NMMKN+KM+K
17 1 16 mpand NMKN+KM+K
18 17 imp NMKN+KM+K