Metamath Proof Explorer


Theorem eluzp1

Description: Membership in a successor upper set of integers. (Contributed by SN, 5-Jul-2025)

Ref Expression
Assertion eluzp1 M N M + 1 N M < N

Proof

Step Hyp Ref Expression
1 zltp1le M N M < N M + 1 N
2 1 pm5.32da M N M < N N M + 1 N
3 peano2z M M + 1
4 3 3biant1d M N M + 1 N M + 1 N M + 1 N
5 eluz2 N M + 1 M + 1 N M + 1 N
6 4 5 bitr4di M N M + 1 N N M + 1
7 2 6 bitr2d M N M + 1 N M < N