Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Arithmetic theorems
eluzp1
Next ⟩
sn-eluzp1l
Metamath Proof Explorer
Ascii
Unicode
Theorem
eluzp1
Description:
Membership in a successor upper set of integers.
(Contributed by
SN
, 5-Jul-2025)
Ref
Expression
Assertion
eluzp1
⊢
M
∈
ℤ
→
N
∈
ℤ
≥
M
+
1
↔
N
∈
ℤ
∧
M
<
N
Proof
Step
Hyp
Ref
Expression
1
zltp1le
⊢
M
∈
ℤ
∧
N
∈
ℤ
→
M
<
N
↔
M
+
1
≤
N
2
1
pm5.32da
⊢
M
∈
ℤ
→
N
∈
ℤ
∧
M
<
N
↔
N
∈
ℤ
∧
M
+
1
≤
N
3
peano2z
⊢
M
∈
ℤ
→
M
+
1
∈
ℤ
4
3
3biant1d
⊢
M
∈
ℤ
→
N
∈
ℤ
∧
M
+
1
≤
N
↔
M
+
1
∈
ℤ
∧
N
∈
ℤ
∧
M
+
1
≤
N
5
eluz2
⊢
N
∈
ℤ
≥
M
+
1
↔
M
+
1
∈
ℤ
∧
N
∈
ℤ
∧
M
+
1
≤
N
6
4
5
bitr4di
⊢
M
∈
ℤ
→
N
∈
ℤ
∧
M
+
1
≤
N
↔
N
∈
ℤ
≥
M
+
1
7
2
6
bitr2d
⊢
M
∈
ℤ
→
N
∈
ℤ
≥
M
+
1
↔
N
∈
ℤ
∧
M
<
N