Metamath Proof Explorer


Theorem sn-eluzp1l

Description: Shorter proof of eluzp1l . (Contributed by NM, 12-Sep-2005) (Revised by SN, 5-Jul-2025)

Ref Expression
Assertion sn-eluzp1l M N M + 1 M < N

Proof

Step Hyp Ref Expression
1 eluzp1 M N M + 1 N M < N
2 1 simplbda M N M + 1 M < N