Description: Shorter proof of eluzp1l . (Contributed by NM, 12-Sep-2005) (Revised by SN, 5-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sn-eluzp1l | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 < 𝑁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzp1 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) ) ) | |
| 2 | 1 | simplbda | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ( ℤ≥ ‘ ( 𝑀 + 1 ) ) ) → 𝑀 < 𝑁 ) |