Description: The sum of N constant terms ( k is not free in C ). (Contributed by SN, 21-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fz1sumconst.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| fz1sumconst.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | ||
| Assertion | fz1sumconst | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( 𝑁 · 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fz1sumconst.n | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) | |
| 2 | fz1sumconst.c | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) | |
| 3 | fzfi | ⊢ ( 1 ... 𝑁 ) ∈ Fin | |
| 4 | fsumconst | ⊢ ( ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝐶 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( ( ♯ ‘ ( 1 ... 𝑁 ) ) · 𝐶 ) ) | |
| 5 | 3 2 4 | sylancr | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( ( ♯ ‘ ( 1 ... 𝑁 ) ) · 𝐶 ) ) |
| 6 | hashfz1 | ⊢ ( 𝑁 ∈ ℕ0 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) | |
| 7 | 1 6 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 1 ... 𝑁 ) ) = 𝑁 ) |
| 8 | 7 | oveq1d | ⊢ ( 𝜑 → ( ( ♯ ‘ ( 1 ... 𝑁 ) ) · 𝐶 ) = ( 𝑁 · 𝐶 ) ) |
| 9 | 5 8 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝐶 = ( 𝑁 · 𝐶 ) ) |