| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fz1sumconst.n |
|- ( ph -> N e. NN0 ) |
| 2 |
|
fz1sumconst.c |
|- ( ph -> C e. CC ) |
| 3 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 4 |
|
fsumconst |
|- ( ( ( 1 ... N ) e. Fin /\ C e. CC ) -> sum_ k e. ( 1 ... N ) C = ( ( # ` ( 1 ... N ) ) x. C ) ) |
| 5 |
3 2 4
|
sylancr |
|- ( ph -> sum_ k e. ( 1 ... N ) C = ( ( # ` ( 1 ... N ) ) x. C ) ) |
| 6 |
|
hashfz1 |
|- ( N e. NN0 -> ( # ` ( 1 ... N ) ) = N ) |
| 7 |
1 6
|
syl |
|- ( ph -> ( # ` ( 1 ... N ) ) = N ) |
| 8 |
7
|
oveq1d |
|- ( ph -> ( ( # ` ( 1 ... N ) ) x. C ) = ( N x. C ) ) |
| 9 |
5 8
|
eqtrd |
|- ( ph -> sum_ k e. ( 1 ... N ) C = ( N x. C ) ) |