Step |
Hyp |
Ref |
Expression |
1 |
|
fz1sump1.n |
|- ( ph -> N e. NN0 ) |
2 |
|
fz1sump1.a |
|- ( ( ph /\ k e. ( 1 ... ( N + 1 ) ) ) -> A e. CC ) |
3 |
|
fz1sump1.s |
|- ( k = ( N + 1 ) -> A = B ) |
4 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
5 |
1 4
|
syl |
|- ( ph -> ( N + 1 ) e. NN ) |
6 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
7 |
5 6
|
eleqtrdi |
|- ( ph -> ( N + 1 ) e. ( ZZ>= ` 1 ) ) |
8 |
7 2 3
|
fsumm1 |
|- ( ph -> sum_ k e. ( 1 ... ( N + 1 ) ) A = ( sum_ k e. ( 1 ... ( ( N + 1 ) - 1 ) ) A + B ) ) |
9 |
1
|
nn0cnd |
|- ( ph -> N e. CC ) |
10 |
|
1cnd |
|- ( ph -> 1 e. CC ) |
11 |
9 10
|
pncand |
|- ( ph -> ( ( N + 1 ) - 1 ) = N ) |
12 |
11
|
oveq2d |
|- ( ph -> ( 1 ... ( ( N + 1 ) - 1 ) ) = ( 1 ... N ) ) |
13 |
12
|
sumeq1d |
|- ( ph -> sum_ k e. ( 1 ... ( ( N + 1 ) - 1 ) ) A = sum_ k e. ( 1 ... N ) A ) |
14 |
13
|
oveq1d |
|- ( ph -> ( sum_ k e. ( 1 ... ( ( N + 1 ) - 1 ) ) A + B ) = ( sum_ k e. ( 1 ... N ) A + B ) ) |
15 |
8 14
|
eqtrd |
|- ( ph -> sum_ k e. ( 1 ... ( N + 1 ) ) A = ( sum_ k e. ( 1 ... N ) A + B ) ) |