| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
| 2 |
|
2cnd |
|- ( k e. ( 1 ... N ) -> 2 e. CC ) |
| 3 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
| 4 |
3
|
nncnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
| 5 |
2 4
|
mulcld |
|- ( k e. ( 1 ... N ) -> ( 2 x. k ) e. CC ) |
| 6 |
5
|
adantl |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( 2 x. k ) e. CC ) |
| 7 |
|
1cnd |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. CC ) |
| 8 |
1 6 7
|
fsumsub |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( ( 2 x. k ) - 1 ) = ( sum_ k e. ( 1 ... N ) ( 2 x. k ) - sum_ k e. ( 1 ... N ) 1 ) ) |
| 9 |
|
arisum |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 10 |
9
|
oveq2d |
|- ( N e. NN0 -> ( 2 x. sum_ k e. ( 1 ... N ) k ) = ( 2 x. ( ( ( N ^ 2 ) + N ) / 2 ) ) ) |
| 11 |
|
2cnd |
|- ( N e. NN0 -> 2 e. CC ) |
| 12 |
4
|
adantl |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. CC ) |
| 13 |
1 11 12
|
fsummulc2 |
|- ( N e. NN0 -> ( 2 x. sum_ k e. ( 1 ... N ) k ) = sum_ k e. ( 1 ... N ) ( 2 x. k ) ) |
| 14 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
| 15 |
14
|
sqcld |
|- ( N e. NN0 -> ( N ^ 2 ) e. CC ) |
| 16 |
15 14
|
addcld |
|- ( N e. NN0 -> ( ( N ^ 2 ) + N ) e. CC ) |
| 17 |
|
2ne0 |
|- 2 =/= 0 |
| 18 |
17
|
a1i |
|- ( N e. NN0 -> 2 =/= 0 ) |
| 19 |
16 11 18
|
divcan2d |
|- ( N e. NN0 -> ( 2 x. ( ( ( N ^ 2 ) + N ) / 2 ) ) = ( ( N ^ 2 ) + N ) ) |
| 20 |
10 13 19
|
3eqtr3d |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( 2 x. k ) = ( ( N ^ 2 ) + N ) ) |
| 21 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
| 22 |
|
1cnd |
|- ( N e. NN0 -> 1 e. CC ) |
| 23 |
21 22
|
fz1sumconst |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) 1 = ( N x. 1 ) ) |
| 24 |
14
|
mulridd |
|- ( N e. NN0 -> ( N x. 1 ) = N ) |
| 25 |
23 24
|
eqtrd |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) 1 = N ) |
| 26 |
20 25
|
oveq12d |
|- ( N e. NN0 -> ( sum_ k e. ( 1 ... N ) ( 2 x. k ) - sum_ k e. ( 1 ... N ) 1 ) = ( ( ( N ^ 2 ) + N ) - N ) ) |
| 27 |
15 14
|
pncand |
|- ( N e. NN0 -> ( ( ( N ^ 2 ) + N ) - N ) = ( N ^ 2 ) ) |
| 28 |
8 26 27
|
3eqtrd |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( ( 2 x. k ) - 1 ) = ( N ^ 2 ) ) |