| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
2cnd |
|
| 3 |
|
elfznn |
|
| 4 |
3
|
nncnd |
|
| 5 |
2 4
|
mulcld |
|
| 6 |
5
|
adantl |
|
| 7 |
|
1cnd |
|
| 8 |
1 6 7
|
fsumsub |
|
| 9 |
|
arisum |
|
| 10 |
9
|
oveq2d |
|
| 11 |
|
2cnd |
|
| 12 |
4
|
adantl |
|
| 13 |
1 11 12
|
fsummulc2 |
|
| 14 |
|
nn0cn |
|
| 15 |
14
|
sqcld |
|
| 16 |
15 14
|
addcld |
|
| 17 |
|
2ne0 |
|
| 18 |
17
|
a1i |
|
| 19 |
16 11 18
|
divcan2d |
|
| 20 |
10 13 19
|
3eqtr3d |
|
| 21 |
|
id |
|
| 22 |
|
1cnd |
|
| 23 |
21 22
|
fz1sumconst |
|
| 24 |
14
|
mulridd |
|
| 25 |
23 24
|
eqtrd |
|
| 26 |
20 25
|
oveq12d |
|
| 27 |
15 14
|
pncand |
|
| 28 |
8 26 27
|
3eqtrd |
|