| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fzfid |
|
| 2 |
|
nn0cn |
|
| 3 |
2
|
adantr |
|
| 4 |
3
|
sqcld |
|
| 5 |
4 3
|
subcld |
|
| 6 |
|
2cnd |
|
| 7 |
|
elfznn |
|
| 8 |
7
|
nncnd |
|
| 9 |
8
|
adantl |
|
| 10 |
6 9
|
mulcld |
|
| 11 |
|
1cnd |
|
| 12 |
10 11
|
subcld |
|
| 13 |
1 5 12
|
fsumadd |
|
| 14 |
|
id |
|
| 15 |
2
|
sqcld |
|
| 16 |
15 2
|
subcld |
|
| 17 |
14 16
|
fz1sumconst |
|
| 18 |
2 15 2
|
subdid |
|
| 19 |
|
df-3 |
|
| 20 |
19
|
oveq2i |
|
| 21 |
|
2nn0 |
|
| 22 |
21
|
a1i |
|
| 23 |
2 22
|
expp1d |
|
| 24 |
20 23
|
eqtrid |
|
| 25 |
15 2
|
mulcomd |
|
| 26 |
24 25
|
eqtr2d |
|
| 27 |
2
|
sqvald |
|
| 28 |
27
|
eqcomd |
|
| 29 |
26 28
|
oveq12d |
|
| 30 |
17 18 29
|
3eqtrd |
|
| 31 |
|
oddnumth |
|
| 32 |
30 31
|
oveq12d |
|
| 33 |
|
3nn0 |
|
| 34 |
33
|
a1i |
|
| 35 |
2 34
|
expcld |
|
| 36 |
35 15
|
npcand |
|
| 37 |
13 32 36
|
3eqtrd |
|