| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|
| 2 |
1
|
sumeq1d |
|
| 3 |
1
|
sumeq1d |
|
| 4 |
3
|
oveq2d |
|
| 5 |
4
|
sumeq1d |
|
| 6 |
2 5
|
eqeq12d |
|
| 7 |
|
oveq2 |
|
| 8 |
7
|
sumeq1d |
|
| 9 |
7
|
sumeq1d |
|
| 10 |
9
|
oveq2d |
|
| 11 |
10
|
sumeq1d |
|
| 12 |
8 11
|
eqeq12d |
|
| 13 |
|
oveq2 |
|
| 14 |
13
|
sumeq1d |
|
| 15 |
13
|
sumeq1d |
|
| 16 |
15
|
oveq2d |
|
| 17 |
16
|
sumeq1d |
|
| 18 |
14 17
|
eqeq12d |
|
| 19 |
|
oveq2 |
|
| 20 |
19
|
sumeq1d |
|
| 21 |
19
|
sumeq1d |
|
| 22 |
21
|
oveq2d |
|
| 23 |
22
|
sumeq1d |
|
| 24 |
20 23
|
eqeq12d |
|
| 25 |
|
sum0 |
|
| 26 |
|
sum0 |
|
| 27 |
25 26
|
eqtr4i |
|
| 28 |
|
fz10 |
|
| 29 |
28
|
sumeq1i |
|
| 30 |
28
|
sumeq1i |
|
| 31 |
|
sum0 |
|
| 32 |
30 31
|
eqtri |
|
| 33 |
32
|
oveq2i |
|
| 34 |
33 28
|
eqtri |
|
| 35 |
34
|
sumeq1i |
|
| 36 |
27 29 35
|
3eqtr4i |
|
| 37 |
|
simpr |
|
| 38 |
|
fzfid |
|
| 39 |
|
elfznn |
|
| 40 |
39
|
adantl |
|
| 41 |
40
|
nnnn0d |
|
| 42 |
38 41
|
fsumnn0cl |
|
| 43 |
42
|
nn0zd |
|
| 44 |
|
nn0p1nn |
|
| 45 |
42 44
|
syl |
|
| 46 |
45
|
nnzd |
|
| 47 |
|
peano2nn0 |
|
| 48 |
47
|
nn0zd |
|
| 49 |
43 48
|
zaddcld |
|
| 50 |
|
2cnd |
|
| 51 |
|
elfzelz |
|
| 52 |
51
|
zcnd |
|
| 53 |
52
|
adantl |
|
| 54 |
50 53
|
mulcld |
|
| 55 |
|
1cnd |
|
| 56 |
54 55
|
subcld |
|
| 57 |
|
oveq2 |
|
| 58 |
57
|
oveq1d |
|
| 59 |
43 46 49 56 58
|
fsumshftm |
|
| 60 |
|
elfzelz |
|
| 61 |
60
|
adantl |
|
| 62 |
61
|
zred |
|
| 63 |
38 62
|
fsumrecl |
|
| 64 |
63
|
recnd |
|
| 65 |
|
1cnd |
|
| 66 |
64 65
|
pncan2d |
|
| 67 |
47
|
nn0cnd |
|
| 68 |
64 67
|
pncan2d |
|
| 69 |
66 68
|
oveq12d |
|
| 70 |
|
elfzelz |
|
| 71 |
70
|
zcnd |
|
| 72 |
|
2cnd |
|
| 73 |
|
simpr |
|
| 74 |
64
|
adantr |
|
| 75 |
72 73 74
|
adddid |
|
| 76 |
75
|
oveq1d |
|
| 77 |
72 73
|
mulcld |
|
| 78 |
72 74
|
mulcld |
|
| 79 |
|
1cnd |
|
| 80 |
77 78 79
|
addsubassd |
|
| 81 |
77 78 79
|
addsub12d |
|
| 82 |
|
arisum |
|
| 83 |
82
|
oveq2d |
|
| 84 |
|
nn0cn |
|
| 85 |
84
|
sqcld |
|
| 86 |
85 84
|
addcld |
|
| 87 |
|
2cnd |
|
| 88 |
|
2ne0 |
|
| 89 |
88
|
a1i |
|
| 90 |
86 87 89
|
divcan2d |
|
| 91 |
|
binom21 |
|
| 92 |
84 91
|
syl |
|
| 93 |
92
|
oveq1d |
|
| 94 |
87 84
|
mulcld |
|
| 95 |
85 94
|
addcld |
|
| 96 |
95 84 65
|
pnpcan2d |
|
| 97 |
85 94 84
|
addsubassd |
|
| 98 |
84
|
2timesd |
|
| 99 |
84 84 98
|
mvrladdd |
|
| 100 |
99
|
oveq2d |
|
| 101 |
97 100
|
eqtrd |
|
| 102 |
93 96 101
|
3eqtrrd |
|
| 103 |
83 90 102
|
3eqtrd |
|
| 104 |
103
|
adantr |
|
| 105 |
104
|
oveq1d |
|
| 106 |
81 105
|
eqtrd |
|
| 107 |
76 80 106
|
3eqtrd |
|
| 108 |
71 107
|
sylan2 |
|
| 109 |
69 108
|
sumeq12dv |
|
| 110 |
59 109
|
eqtr2d |
|
| 111 |
110
|
adantr |
|
| 112 |
37 111
|
oveq12d |
|
| 113 |
|
id |
|
| 114 |
|
fzfid |
|
| 115 |
|
elfzelz |
|
| 116 |
115
|
zcnd |
|
| 117 |
116
|
sqcld |
|
| 118 |
117 116
|
subcld |
|
| 119 |
|
2cnd |
|
| 120 |
|
elfzelz |
|
| 121 |
120
|
zcnd |
|
| 122 |
119 121
|
mulcld |
|
| 123 |
|
1cnd |
|
| 124 |
122 123
|
subcld |
|
| 125 |
|
addcl |
|
| 126 |
118 124 125
|
syl2an |
|
| 127 |
126
|
adantll |
|
| 128 |
114 127
|
fsumcl |
|
| 129 |
|
oveq2 |
|
| 130 |
|
oveq1 |
|
| 131 |
|
id |
|
| 132 |
130 131
|
oveq12d |
|
| 133 |
132
|
oveq1d |
|
| 134 |
133
|
adantr |
|
| 135 |
129 134
|
sumeq12dv |
|
| 136 |
113 128 135
|
fz1sump1 |
|
| 137 |
136
|
adantr |
|
| 138 |
116
|
adantl |
|
| 139 |
113 138 131
|
fz1sump1 |
|
| 140 |
139
|
adantr |
|
| 141 |
140
|
oveq2d |
|
| 142 |
141
|
sumeq1d |
|
| 143 |
63
|
ltp1d |
|
| 144 |
|
fzdisj |
|
| 145 |
143 144
|
syl |
|
| 146 |
|
nnuz |
|
| 147 |
45 146
|
eleqtrdi |
|
| 148 |
43
|
uzidd |
|
| 149 |
|
uzaddcl |
|
| 150 |
148 47 149
|
syl2anc |
|
| 151 |
|
fzsplit2 |
|
| 152 |
147 150 151
|
syl2anc |
|
| 153 |
|
fzfid |
|
| 154 |
|
2cnd |
|
| 155 |
|
elfzelz |
|
| 156 |
155
|
zcnd |
|
| 157 |
156
|
adantl |
|
| 158 |
154 157
|
mulcld |
|
| 159 |
|
1cnd |
|
| 160 |
158 159
|
subcld |
|
| 161 |
145 152 153 160
|
fsumsplit |
|
| 162 |
161
|
adantr |
|
| 163 |
142 162
|
eqtrd |
|
| 164 |
112 137 163
|
3eqtr4d |
|
| 165 |
164
|
ex |
|
| 166 |
6 12 18 24 36 165
|
nn0ind |
|
| 167 |
|
fz1ssnn |
|
| 168 |
|
nnssnn0 |
|
| 169 |
167 168
|
sstri |
|
| 170 |
169
|
a1i |
|
| 171 |
170
|
sselda |
|
| 172 |
|
nicomachus |
|
| 173 |
171 172
|
syl |
|
| 174 |
173
|
sumeq2dv |
|
| 175 |
|
fzfid |
|
| 176 |
175 171
|
fsumnn0cl |
|
| 177 |
|
oddnumth |
|
| 178 |
176 177
|
syl |
|
| 179 |
166 174 178
|
3eqtr3d |
|