| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 1 ... 𝑥 ) = ( 1 ... 0 ) ) |
| 2 |
1
|
sumeq1d |
⊢ ( 𝑥 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... 0 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 3 |
1
|
sumeq1d |
⊢ ( 𝑥 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 = Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) = ( 1 ... Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) ) |
| 5 |
4
|
sumeq1d |
⊢ ( 𝑥 = 0 → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 6 |
2 5
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ↔ Σ 𝑘 ∈ ( 1 ... 0 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 7 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 1 ... 𝑥 ) = ( 1 ... 𝑦 ) ) |
| 8 |
7
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 9 |
7
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 = Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) |
| 10 |
9
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) = ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) |
| 11 |
10
|
sumeq1d |
⊢ ( 𝑥 = 𝑦 → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 12 |
8 11
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ↔ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 ... 𝑥 ) = ( 1 ... ( 𝑦 + 1 ) ) ) |
| 14 |
13
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 15 |
13
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 = Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) |
| 16 |
15
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) = ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) ) |
| 17 |
16
|
sumeq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 18 |
14 17
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ↔ Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 19 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 1 ... 𝑥 ) = ( 1 ... 𝑁 ) ) |
| 20 |
19
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 21 |
19
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 = Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) |
| 22 |
21
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) = ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ) |
| 23 |
22
|
sumeq1d |
⊢ ( 𝑥 = 𝑁 → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 24 |
20 23
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( Σ 𝑘 ∈ ( 1 ... 𝑥 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑥 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ↔ Σ 𝑘 ∈ ( 1 ... 𝑁 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 25 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = 0 |
| 26 |
|
sum0 |
⊢ Σ 𝑚 ∈ ∅ ( ( 2 · 𝑚 ) − 1 ) = 0 |
| 27 |
25 26
|
eqtr4i |
⊢ Σ 𝑘 ∈ ∅ Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ∅ ( ( 2 · 𝑚 ) − 1 ) |
| 28 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 29 |
28
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 1 ... 0 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑘 ∈ ∅ Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) |
| 30 |
28
|
sumeq1i |
⊢ Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 = Σ 𝑘 ∈ ∅ 𝑘 |
| 31 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝑘 = 0 |
| 32 |
30 31
|
eqtri |
⊢ Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 = 0 |
| 33 |
32
|
oveq2i |
⊢ ( 1 ... Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) = ( 1 ... 0 ) |
| 34 |
33 28
|
eqtri |
⊢ ( 1 ... Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) = ∅ |
| 35 |
34
|
sumeq1i |
⊢ Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = Σ 𝑚 ∈ ∅ ( ( 2 · 𝑚 ) − 1 ) |
| 36 |
27 29 35
|
3eqtr4i |
⊢ Σ 𝑘 ∈ ( 1 ... 0 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 0 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) |
| 37 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 38 |
|
fzfid |
⊢ ( 𝑦 ∈ ℕ0 → ( 1 ... 𝑦 ) ∈ Fin ) |
| 39 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... 𝑦 ) → 𝑘 ∈ ℕ ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑦 ) ) → 𝑘 ∈ ℕ ) |
| 41 |
40
|
nnnn0d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑦 ) ) → 𝑘 ∈ ℕ0 ) |
| 42 |
38 41
|
fsumnn0cl |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ℕ0 ) |
| 43 |
42
|
nn0zd |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ℤ ) |
| 44 |
|
nn0p1nn |
⊢ ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ℕ0 → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ∈ ℕ ) |
| 45 |
42 44
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ∈ ℕ ) |
| 46 |
45
|
nnzd |
⊢ ( 𝑦 ∈ ℕ0 → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ∈ ℤ ) |
| 47 |
|
peano2nn0 |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℕ0 ) |
| 48 |
47
|
nn0zd |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℤ ) |
| 49 |
43 48
|
zaddcld |
⊢ ( 𝑦 ∈ ℕ0 → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ∈ ℤ ) |
| 50 |
|
2cnd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → 2 ∈ ℂ ) |
| 51 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) → 𝑚 ∈ ℤ ) |
| 52 |
51
|
zcnd |
⊢ ( 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) → 𝑚 ∈ ℂ ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → 𝑚 ∈ ℂ ) |
| 54 |
50 53
|
mulcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → ( 2 · 𝑚 ) ∈ ℂ ) |
| 55 |
|
1cnd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → 1 ∈ ℂ ) |
| 56 |
54 55
|
subcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → ( ( 2 · 𝑚 ) − 1 ) ∈ ℂ ) |
| 57 |
|
oveq2 |
⊢ ( 𝑚 = ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) → ( 2 · 𝑚 ) = ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) ) |
| 58 |
57
|
oveq1d |
⊢ ( 𝑚 = ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) → ( ( 2 · 𝑚 ) − 1 ) = ( ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) ) |
| 59 |
43 46 49 56 58
|
fsumshftm |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) = Σ 𝑙 ∈ ( ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ... ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) ( ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) ) |
| 60 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝑦 ) → 𝑘 ∈ ℤ ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑦 ) ) → 𝑘 ∈ ℤ ) |
| 62 |
61
|
zred |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑦 ) ) → 𝑘 ∈ ℝ ) |
| 63 |
38 62
|
fsumrecl |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ℝ ) |
| 64 |
63
|
recnd |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ℂ ) |
| 65 |
|
1cnd |
⊢ ( 𝑦 ∈ ℕ0 → 1 ∈ ℂ ) |
| 66 |
64 65
|
pncan2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) = 1 ) |
| 67 |
47
|
nn0cnd |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 + 1 ) ∈ ℂ ) |
| 68 |
64 67
|
pncan2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) = ( 𝑦 + 1 ) ) |
| 69 |
66 68
|
oveq12d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ... ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) = ( 1 ... ( 𝑦 + 1 ) ) ) |
| 70 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ... ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) → 𝑙 ∈ ℤ ) |
| 71 |
70
|
zcnd |
⊢ ( 𝑙 ∈ ( ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ... ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) → 𝑙 ∈ ℂ ) |
| 72 |
|
2cnd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → 2 ∈ ℂ ) |
| 73 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → 𝑙 ∈ ℂ ) |
| 74 |
64
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ℂ ) |
| 75 |
72 73 74
|
adddid |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) = ( ( 2 · 𝑙 ) + ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) ) |
| 76 |
75
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) = ( ( ( 2 · 𝑙 ) + ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) ) |
| 77 |
72 73
|
mulcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( 2 · 𝑙 ) ∈ ℂ ) |
| 78 |
72 74
|
mulcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ∈ ℂ ) |
| 79 |
|
1cnd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → 1 ∈ ℂ ) |
| 80 |
77 78 79
|
addsubassd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( ( ( 2 · 𝑙 ) + ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) = ( ( 2 · 𝑙 ) + ( ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) − 1 ) ) ) |
| 81 |
77 78 79
|
addsub12d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( ( 2 · 𝑙 ) + ( ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) − 1 ) ) = ( ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 82 |
|
arisum |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 = ( ( ( 𝑦 ↑ 2 ) + 𝑦 ) / 2 ) ) |
| 83 |
82
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) = ( 2 · ( ( ( 𝑦 ↑ 2 ) + 𝑦 ) / 2 ) ) ) |
| 84 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
| 85 |
84
|
sqcld |
⊢ ( 𝑦 ∈ ℕ0 → ( 𝑦 ↑ 2 ) ∈ ℂ ) |
| 86 |
85 84
|
addcld |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ↑ 2 ) + 𝑦 ) ∈ ℂ ) |
| 87 |
|
2cnd |
⊢ ( 𝑦 ∈ ℕ0 → 2 ∈ ℂ ) |
| 88 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 89 |
88
|
a1i |
⊢ ( 𝑦 ∈ ℕ0 → 2 ≠ 0 ) |
| 90 |
86 87 89
|
divcan2d |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 · ( ( ( 𝑦 ↑ 2 ) + 𝑦 ) / 2 ) ) = ( ( 𝑦 ↑ 2 ) + 𝑦 ) ) |
| 91 |
|
binom21 |
⊢ ( 𝑦 ∈ ℂ → ( ( 𝑦 + 1 ) ↑ 2 ) = ( ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) + 1 ) ) |
| 92 |
84 91
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 + 1 ) ↑ 2 ) = ( ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) + 1 ) ) |
| 93 |
92
|
oveq1d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) = ( ( ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) + 1 ) − ( 𝑦 + 1 ) ) ) |
| 94 |
87 84
|
mulcld |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 · 𝑦 ) ∈ ℂ ) |
| 95 |
85 94
|
addcld |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) ∈ ℂ ) |
| 96 |
95 84 65
|
pnpcan2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) + 1 ) − ( 𝑦 + 1 ) ) = ( ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) − 𝑦 ) ) |
| 97 |
85 94 84
|
addsubassd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) − 𝑦 ) = ( ( 𝑦 ↑ 2 ) + ( ( 2 · 𝑦 ) − 𝑦 ) ) ) |
| 98 |
84
|
2timesd |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 · 𝑦 ) = ( 𝑦 + 𝑦 ) ) |
| 99 |
84 84 98
|
mvrladdd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 2 · 𝑦 ) − 𝑦 ) = 𝑦 ) |
| 100 |
99
|
oveq2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ↑ 2 ) + ( ( 2 · 𝑦 ) − 𝑦 ) ) = ( ( 𝑦 ↑ 2 ) + 𝑦 ) ) |
| 101 |
97 100
|
eqtrd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑦 ↑ 2 ) + ( 2 · 𝑦 ) ) − 𝑦 ) = ( ( 𝑦 ↑ 2 ) + 𝑦 ) ) |
| 102 |
93 96 101
|
3eqtrrd |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 𝑦 ↑ 2 ) + 𝑦 ) = ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) ) |
| 103 |
83 90 102
|
3eqtrd |
⊢ ( 𝑦 ∈ ℕ0 → ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) = ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) ) |
| 104 |
103
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) = ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) ) |
| 105 |
104
|
oveq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 106 |
81 105
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( ( 2 · 𝑙 ) + ( ( 2 · Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) − 1 ) ) = ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 107 |
76 80 106
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ℂ ) → ( ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) = ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 108 |
71 107
|
sylan2 |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑙 ∈ ( ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ... ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) ) → ( ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) = ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 109 |
69 108
|
sumeq12dv |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑙 ∈ ( ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ... ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) − Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) ( ( 2 · ( 𝑙 + Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) − 1 ) = Σ 𝑙 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 110 |
59 109
|
eqtr2d |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑙 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 111 |
110
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑙 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 112 |
37 111
|
oveq12d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) + Σ 𝑙 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) = ( Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) + Σ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 113 |
|
id |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℕ0 ) |
| 114 |
|
fzfid |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → ( 1 ... 𝑘 ) ∈ Fin ) |
| 115 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑘 ∈ ℤ ) |
| 116 |
115
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) → 𝑘 ∈ ℂ ) |
| 117 |
116
|
sqcld |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) → ( 𝑘 ↑ 2 ) ∈ ℂ ) |
| 118 |
117 116
|
subcld |
⊢ ( 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) → ( ( 𝑘 ↑ 2 ) − 𝑘 ) ∈ ℂ ) |
| 119 |
|
2cnd |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 2 ∈ ℂ ) |
| 120 |
|
elfzelz |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 𝑙 ∈ ℤ ) |
| 121 |
120
|
zcnd |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 𝑙 ∈ ℂ ) |
| 122 |
119 121
|
mulcld |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → ( 2 · 𝑙 ) ∈ ℂ ) |
| 123 |
|
1cnd |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → 1 ∈ ℂ ) |
| 124 |
122 123
|
subcld |
⊢ ( 𝑙 ∈ ( 1 ... 𝑘 ) → ( ( 2 · 𝑙 ) − 1 ) ∈ ℂ ) |
| 125 |
|
addcl |
⊢ ( ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) ∈ ℂ ∧ ( ( 2 · 𝑙 ) − 1 ) ∈ ℂ ) → ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ∈ ℂ ) |
| 126 |
118 124 125
|
syl2an |
⊢ ( ( 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ∈ ℂ ) |
| 127 |
126
|
adantll |
⊢ ( ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ∈ ℂ ) |
| 128 |
114 127
|
fsumcl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) ∈ ℂ ) |
| 129 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( 1 ... 𝑘 ) = ( 1 ... ( 𝑦 + 1 ) ) ) |
| 130 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( 𝑘 ↑ 2 ) = ( ( 𝑦 + 1 ) ↑ 2 ) ) |
| 131 |
|
id |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → 𝑘 = ( 𝑦 + 1 ) ) |
| 132 |
130 131
|
oveq12d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( 𝑘 ↑ 2 ) − 𝑘 ) = ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) ) |
| 133 |
132
|
oveq1d |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 134 |
133
|
adantr |
⊢ ( ( 𝑘 = ( 𝑦 + 1 ) ∧ 𝑙 ∈ ( 1 ... 𝑘 ) ) → ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 135 |
129 134
|
sumeq12dv |
⊢ ( 𝑘 = ( 𝑦 + 1 ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑙 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) |
| 136 |
113 128 135
|
fz1sump1 |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) + Σ 𝑙 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) + Σ 𝑙 ∈ ( 1 ... ( 𝑦 + 1 ) ) ( ( ( ( 𝑦 + 1 ) ↑ 2 ) − ( 𝑦 + 1 ) ) + ( ( 2 · 𝑙 ) − 1 ) ) ) ) |
| 138 |
116
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) ) → 𝑘 ∈ ℂ ) |
| 139 |
113 138 131
|
fz1sump1 |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 = ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) |
| 140 |
139
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 = ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) |
| 141 |
140
|
oveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) = ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) |
| 142 |
141
|
sumeq1d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = Σ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 143 |
63
|
ltp1d |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 < ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ) |
| 144 |
|
fzdisj |
⊢ ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 < ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) → ( ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ∩ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) = ∅ ) |
| 145 |
143 144
|
syl |
⊢ ( 𝑦 ∈ ℕ0 → ( ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ∩ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) = ∅ ) |
| 146 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 147 |
45 146
|
eleqtrdi |
⊢ ( 𝑦 ∈ ℕ0 → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 148 |
43
|
uzidd |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ( ℤ≥ ‘ Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) |
| 149 |
|
uzaddcl |
⊢ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ∈ ( ℤ≥ ‘ Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ∧ ( 𝑦 + 1 ) ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) |
| 150 |
148 47 149
|
syl2anc |
⊢ ( 𝑦 ∈ ℕ0 → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) |
| 151 |
|
fzsplit2 |
⊢ ( ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ∈ ( ℤ≥ ‘ Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ) → ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) = ( ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ∪ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) ) |
| 152 |
147 150 151
|
syl2anc |
⊢ ( 𝑦 ∈ ℕ0 → ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) = ( ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ∪ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) ) |
| 153 |
|
fzfid |
⊢ ( 𝑦 ∈ ℕ0 → ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ∈ Fin ) |
| 154 |
|
2cnd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → 2 ∈ ℂ ) |
| 155 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) → 𝑚 ∈ ℤ ) |
| 156 |
155
|
zcnd |
⊢ ( 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) → 𝑚 ∈ ℂ ) |
| 157 |
156
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → 𝑚 ∈ ℂ ) |
| 158 |
154 157
|
mulcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → ( 2 · 𝑚 ) ∈ ℂ ) |
| 159 |
|
1cnd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → 1 ∈ ℂ ) |
| 160 |
158 159
|
subcld |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ) → ( ( 2 · 𝑚 ) − 1 ) ∈ ℂ ) |
| 161 |
145 152 153 160
|
fsumsplit |
⊢ ( 𝑦 ∈ ℕ0 → Σ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) = ( Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) + Σ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 162 |
161
|
adantr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑚 ∈ ( 1 ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) = ( Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) + Σ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 163 |
142 162
|
eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = ( Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) + Σ 𝑚 ∈ ( ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + 1 ) ... ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 + ( 𝑦 + 1 ) ) ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 164 |
112 137 163
|
3eqtr4d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) → Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 165 |
164
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( Σ 𝑘 ∈ ( 1 ... 𝑦 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑦 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) → Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... ( 𝑦 + 1 ) ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) ) |
| 166 |
6 12 18 24 36 165
|
nn0ind |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) ) |
| 167 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 168 |
|
nnssnn0 |
⊢ ℕ ⊆ ℕ0 |
| 169 |
167 168
|
sstri |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ0 |
| 170 |
169
|
a1i |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ⊆ ℕ0 ) |
| 171 |
170
|
sselda |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℕ0 ) |
| 172 |
|
nicomachus |
⊢ ( 𝑘 ∈ ℕ0 → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = ( 𝑘 ↑ 3 ) ) |
| 173 |
171 172
|
syl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = ( 𝑘 ↑ 3 ) ) |
| 174 |
173
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) Σ 𝑙 ∈ ( 1 ... 𝑘 ) ( ( ( 𝑘 ↑ 2 ) − 𝑘 ) + ( ( 2 · 𝑙 ) − 1 ) ) = Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑘 ↑ 3 ) ) |
| 175 |
|
fzfid |
⊢ ( 𝑁 ∈ ℕ0 → ( 1 ... 𝑁 ) ∈ Fin ) |
| 176 |
175 171
|
fsumnn0cl |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ∈ ℕ0 ) |
| 177 |
|
oddnumth |
⊢ ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ∈ ℕ0 → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ↑ 2 ) ) |
| 178 |
176 177
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑚 ∈ ( 1 ... Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ) ( ( 2 · 𝑚 ) − 1 ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ↑ 2 ) ) |
| 179 |
166 174 178
|
3eqtr3d |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) ( 𝑘 ↑ 3 ) = ( Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 ↑ 2 ) ) |