| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) |
| 2 |
|
1zzd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℤ ) |
| 3 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 4 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℤ ) |
| 5 |
4
|
zcnd |
⊢ ( 𝑘 ∈ ( 1 ... 𝑁 ) → 𝑘 ∈ ℂ ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑘 ∈ ( 1 ... 𝑁 ) ) → 𝑘 ∈ ℂ ) |
| 7 |
|
id |
⊢ ( 𝑘 = ( 𝑗 + 1 ) → 𝑘 = ( 𝑗 + 1 ) ) |
| 8 |
2 2 3 6 7
|
fsumshftm |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) ) |
| 9 |
|
1m1e0 |
⊢ ( 1 − 1 ) = 0 |
| 10 |
9
|
oveq1i |
⊢ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) = ( 0 ... ( 𝑁 − 1 ) ) |
| 11 |
10
|
sumeq1i |
⊢ Σ 𝑗 ∈ ( ( 1 − 1 ) ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) |
| 12 |
8 11
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) ) |
| 13 |
|
elfznn0 |
⊢ ( 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) → 𝑗 ∈ ℕ0 ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℕ0 ) |
| 15 |
|
bcnp1n |
⊢ ( 𝑗 ∈ ℕ0 → ( ( 𝑗 + 1 ) C 𝑗 ) = ( 𝑗 + 1 ) ) |
| 16 |
14 15
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) C 𝑗 ) = ( 𝑗 + 1 ) ) |
| 17 |
14
|
nn0cnd |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑗 ∈ ℂ ) |
| 18 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 19 |
|
addcom |
⊢ ( ( 𝑗 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝑗 + 1 ) = ( 1 + 𝑗 ) ) |
| 20 |
17 18 19
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) = ( 1 + 𝑗 ) ) |
| 21 |
20
|
oveq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑗 + 1 ) C 𝑗 ) = ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 22 |
16 21
|
eqtr3d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( 𝑗 + 1 ) = ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 23 |
22
|
sumeq2dv |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 24 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 25 |
|
nnm1nn0 |
⊢ ( 𝑁 ∈ ℕ → ( 𝑁 − 1 ) ∈ ℕ0 ) |
| 26 |
|
bcxmas |
⊢ ( ( 1 ∈ ℕ0 ∧ ( 𝑁 − 1 ) ∈ ℕ0 ) → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 27 |
24 25 26
|
sylancr |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 1 + 𝑗 ) C 𝑗 ) ) |
| 28 |
23 27
|
eqtr4d |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑗 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( 𝑗 + 1 ) = ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) ) |
| 29 |
|
1cnd |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℂ ) |
| 30 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 31 |
29 29 30
|
ppncand |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) = ( 1 + 𝑁 ) ) |
| 32 |
29 30 31
|
comraddd |
⊢ ( 𝑁 ∈ ℕ → ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) = ( 𝑁 + 1 ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = ( ( 𝑁 + 1 ) C ( 𝑁 − 1 ) ) ) |
| 34 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 35 |
|
bcp1m1 |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) C ( 𝑁 − 1 ) ) = ( ( ( 𝑁 + 1 ) · 𝑁 ) / 2 ) ) |
| 36 |
34 35
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) C ( 𝑁 − 1 ) ) = ( ( ( 𝑁 + 1 ) · 𝑁 ) / 2 ) ) |
| 37 |
|
sqval |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 ↑ 2 ) = ( 𝑁 · 𝑁 ) ) |
| 38 |
37
|
eqcomd |
⊢ ( 𝑁 ∈ ℂ → ( 𝑁 · 𝑁 ) = ( 𝑁 ↑ 2 ) ) |
| 39 |
|
mullid |
⊢ ( 𝑁 ∈ ℂ → ( 1 · 𝑁 ) = 𝑁 ) |
| 40 |
38 39
|
oveq12d |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 · 𝑁 ) + ( 1 · 𝑁 ) ) = ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) |
| 41 |
30 40
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 · 𝑁 ) + ( 1 · 𝑁 ) ) = ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) |
| 42 |
30 30 29 41
|
joinlmuladdmuld |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 + 1 ) · 𝑁 ) = ( ( 𝑁 ↑ 2 ) + 𝑁 ) ) |
| 43 |
42
|
oveq1d |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑁 + 1 ) · 𝑁 ) / 2 ) = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 44 |
33 36 43
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 1 + 1 ) + ( 𝑁 − 1 ) ) C ( 𝑁 − 1 ) ) = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 45 |
12 28 44
|
3eqtrd |
⊢ ( 𝑁 ∈ ℕ → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ( 1 ... 0 ) ) |
| 47 |
|
fz10 |
⊢ ( 1 ... 0 ) = ∅ |
| 48 |
46 47
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 1 ... 𝑁 ) = ∅ ) |
| 49 |
48
|
sumeq1d |
⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = Σ 𝑘 ∈ ∅ 𝑘 ) |
| 50 |
|
sum0 |
⊢ Σ 𝑘 ∈ ∅ 𝑘 = 0 |
| 51 |
49 50
|
eqtrdi |
⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = 0 ) |
| 52 |
|
sq0i |
⊢ ( 𝑁 = 0 → ( 𝑁 ↑ 2 ) = 0 ) |
| 53 |
|
id |
⊢ ( 𝑁 = 0 → 𝑁 = 0 ) |
| 54 |
52 53
|
oveq12d |
⊢ ( 𝑁 = 0 → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = ( 0 + 0 ) ) |
| 55 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 56 |
54 55
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( ( 𝑁 ↑ 2 ) + 𝑁 ) = 0 ) |
| 57 |
56
|
oveq1d |
⊢ ( 𝑁 = 0 → ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) = ( 0 / 2 ) ) |
| 58 |
|
2cn |
⊢ 2 ∈ ℂ |
| 59 |
|
2ne0 |
⊢ 2 ≠ 0 |
| 60 |
58 59
|
div0i |
⊢ ( 0 / 2 ) = 0 |
| 61 |
57 60
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) = 0 ) |
| 62 |
51 61
|
eqtr4d |
⊢ ( 𝑁 = 0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 63 |
45 62
|
jaoi |
⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |
| 64 |
1 63
|
sylbi |
⊢ ( 𝑁 ∈ ℕ0 → Σ 𝑘 ∈ ( 1 ... 𝑁 ) 𝑘 = ( ( ( 𝑁 ↑ 2 ) + 𝑁 ) / 2 ) ) |