| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elnn0 |
|- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
| 2 |
|
1zzd |
|- ( N e. NN -> 1 e. ZZ ) |
| 3 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
| 4 |
|
elfzelz |
|- ( k e. ( 1 ... N ) -> k e. ZZ ) |
| 5 |
4
|
zcnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
| 6 |
5
|
adantl |
|- ( ( N e. NN /\ k e. ( 1 ... N ) ) -> k e. CC ) |
| 7 |
|
id |
|- ( k = ( j + 1 ) -> k = ( j + 1 ) ) |
| 8 |
2 2 3 6 7
|
fsumshftm |
|- ( N e. NN -> sum_ k e. ( 1 ... N ) k = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( j + 1 ) ) |
| 9 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 10 |
9
|
oveq1i |
|- ( ( 1 - 1 ) ... ( N - 1 ) ) = ( 0 ... ( N - 1 ) ) |
| 11 |
10
|
sumeq1i |
|- sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( j + 1 ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) |
| 12 |
8 11
|
eqtrdi |
|- ( N e. NN -> sum_ k e. ( 1 ... N ) k = sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) ) |
| 13 |
|
elfznn0 |
|- ( j e. ( 0 ... ( N - 1 ) ) -> j e. NN0 ) |
| 14 |
13
|
adantl |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. NN0 ) |
| 15 |
|
bcnp1n |
|- ( j e. NN0 -> ( ( j + 1 ) _C j ) = ( j + 1 ) ) |
| 16 |
14 15
|
syl |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) _C j ) = ( j + 1 ) ) |
| 17 |
14
|
nn0cnd |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> j e. CC ) |
| 18 |
|
ax-1cn |
|- 1 e. CC |
| 19 |
|
addcom |
|- ( ( j e. CC /\ 1 e. CC ) -> ( j + 1 ) = ( 1 + j ) ) |
| 20 |
17 18 19
|
sylancl |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) = ( 1 + j ) ) |
| 21 |
20
|
oveq1d |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( ( j + 1 ) _C j ) = ( ( 1 + j ) _C j ) ) |
| 22 |
16 21
|
eqtr3d |
|- ( ( N e. NN /\ j e. ( 0 ... ( N - 1 ) ) ) -> ( j + 1 ) = ( ( 1 + j ) _C j ) ) |
| 23 |
22
|
sumeq2dv |
|- ( N e. NN -> sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
| 24 |
|
1nn0 |
|- 1 e. NN0 |
| 25 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 26 |
|
bcxmas |
|- ( ( 1 e. NN0 /\ ( N - 1 ) e. NN0 ) -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
| 27 |
24 25 26
|
sylancr |
|- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = sum_ j e. ( 0 ... ( N - 1 ) ) ( ( 1 + j ) _C j ) ) |
| 28 |
23 27
|
eqtr4d |
|- ( N e. NN -> sum_ j e. ( 0 ... ( N - 1 ) ) ( j + 1 ) = ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) ) |
| 29 |
|
1cnd |
|- ( N e. NN -> 1 e. CC ) |
| 30 |
|
nncn |
|- ( N e. NN -> N e. CC ) |
| 31 |
29 29 30
|
ppncand |
|- ( N e. NN -> ( ( 1 + 1 ) + ( N - 1 ) ) = ( 1 + N ) ) |
| 32 |
29 30 31
|
comraddd |
|- ( N e. NN -> ( ( 1 + 1 ) + ( N - 1 ) ) = ( N + 1 ) ) |
| 33 |
32
|
oveq1d |
|- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = ( ( N + 1 ) _C ( N - 1 ) ) ) |
| 34 |
|
nnnn0 |
|- ( N e. NN -> N e. NN0 ) |
| 35 |
|
bcp1m1 |
|- ( N e. NN0 -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
| 36 |
34 35
|
syl |
|- ( N e. NN -> ( ( N + 1 ) _C ( N - 1 ) ) = ( ( ( N + 1 ) x. N ) / 2 ) ) |
| 37 |
|
sqval |
|- ( N e. CC -> ( N ^ 2 ) = ( N x. N ) ) |
| 38 |
37
|
eqcomd |
|- ( N e. CC -> ( N x. N ) = ( N ^ 2 ) ) |
| 39 |
|
mullid |
|- ( N e. CC -> ( 1 x. N ) = N ) |
| 40 |
38 39
|
oveq12d |
|- ( N e. CC -> ( ( N x. N ) + ( 1 x. N ) ) = ( ( N ^ 2 ) + N ) ) |
| 41 |
30 40
|
syl |
|- ( N e. NN -> ( ( N x. N ) + ( 1 x. N ) ) = ( ( N ^ 2 ) + N ) ) |
| 42 |
30 30 29 41
|
joinlmuladdmuld |
|- ( N e. NN -> ( ( N + 1 ) x. N ) = ( ( N ^ 2 ) + N ) ) |
| 43 |
42
|
oveq1d |
|- ( N e. NN -> ( ( ( N + 1 ) x. N ) / 2 ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 44 |
33 36 43
|
3eqtrd |
|- ( N e. NN -> ( ( ( 1 + 1 ) + ( N - 1 ) ) _C ( N - 1 ) ) = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 45 |
12 28 44
|
3eqtrd |
|- ( N e. NN -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 46 |
|
oveq2 |
|- ( N = 0 -> ( 1 ... N ) = ( 1 ... 0 ) ) |
| 47 |
|
fz10 |
|- ( 1 ... 0 ) = (/) |
| 48 |
46 47
|
eqtrdi |
|- ( N = 0 -> ( 1 ... N ) = (/) ) |
| 49 |
48
|
sumeq1d |
|- ( N = 0 -> sum_ k e. ( 1 ... N ) k = sum_ k e. (/) k ) |
| 50 |
|
sum0 |
|- sum_ k e. (/) k = 0 |
| 51 |
49 50
|
eqtrdi |
|- ( N = 0 -> sum_ k e. ( 1 ... N ) k = 0 ) |
| 52 |
|
sq0i |
|- ( N = 0 -> ( N ^ 2 ) = 0 ) |
| 53 |
|
id |
|- ( N = 0 -> N = 0 ) |
| 54 |
52 53
|
oveq12d |
|- ( N = 0 -> ( ( N ^ 2 ) + N ) = ( 0 + 0 ) ) |
| 55 |
|
00id |
|- ( 0 + 0 ) = 0 |
| 56 |
54 55
|
eqtrdi |
|- ( N = 0 -> ( ( N ^ 2 ) + N ) = 0 ) |
| 57 |
56
|
oveq1d |
|- ( N = 0 -> ( ( ( N ^ 2 ) + N ) / 2 ) = ( 0 / 2 ) ) |
| 58 |
|
2cn |
|- 2 e. CC |
| 59 |
|
2ne0 |
|- 2 =/= 0 |
| 60 |
58 59
|
div0i |
|- ( 0 / 2 ) = 0 |
| 61 |
57 60
|
eqtrdi |
|- ( N = 0 -> ( ( ( N ^ 2 ) + N ) / 2 ) = 0 ) |
| 62 |
51 61
|
eqtr4d |
|- ( N = 0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 63 |
45 62
|
jaoi |
|- ( ( N e. NN \/ N = 0 ) -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |
| 64 |
1 63
|
sylbi |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) k = ( ( ( N ^ 2 ) + N ) / 2 ) ) |