Metamath Proof Explorer


Theorem binom21

Description: Special case of binom2 where B = 1 . (Contributed by Scott Fenton, 11-May-2014)

Ref Expression
Assertion binom21 AA+12=A2+2A+1

Proof

Step Hyp Ref Expression
1 ax-1cn 1
2 binom2 A1A+12=A2+2A1+12
3 1 2 mpan2 AA+12=A2+2A1+12
4 mulrid AA1=A
5 4 oveq2d A2A1=2A
6 5 oveq2d AA2+2A1=A2+2A
7 sq1 12=1
8 7 a1i A12=1
9 6 8 oveq12d AA2+2A1+12=A2+2A+1
10 3 9 eqtrd AA+12=A2+2A+1