Step |
Hyp |
Ref |
Expression |
1 |
|
fzfid |
|- ( N e. NN0 -> ( 1 ... N ) e. Fin ) |
2 |
|
nn0cn |
|- ( N e. NN0 -> N e. CC ) |
3 |
2
|
adantr |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> N e. CC ) |
4 |
3
|
sqcld |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( N ^ 2 ) e. CC ) |
5 |
4 3
|
subcld |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( ( N ^ 2 ) - N ) e. CC ) |
6 |
|
2cnd |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 2 e. CC ) |
7 |
|
elfznn |
|- ( k e. ( 1 ... N ) -> k e. NN ) |
8 |
7
|
nncnd |
|- ( k e. ( 1 ... N ) -> k e. CC ) |
9 |
8
|
adantl |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> k e. CC ) |
10 |
6 9
|
mulcld |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( 2 x. k ) e. CC ) |
11 |
|
1cnd |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> 1 e. CC ) |
12 |
10 11
|
subcld |
|- ( ( N e. NN0 /\ k e. ( 1 ... N ) ) -> ( ( 2 x. k ) - 1 ) e. CC ) |
13 |
1 5 12
|
fsumadd |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( ( ( N ^ 2 ) - N ) + ( ( 2 x. k ) - 1 ) ) = ( sum_ k e. ( 1 ... N ) ( ( N ^ 2 ) - N ) + sum_ k e. ( 1 ... N ) ( ( 2 x. k ) - 1 ) ) ) |
14 |
|
id |
|- ( N e. NN0 -> N e. NN0 ) |
15 |
2
|
sqcld |
|- ( N e. NN0 -> ( N ^ 2 ) e. CC ) |
16 |
15 2
|
subcld |
|- ( N e. NN0 -> ( ( N ^ 2 ) - N ) e. CC ) |
17 |
14 16
|
fz1sumconst |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( ( N ^ 2 ) - N ) = ( N x. ( ( N ^ 2 ) - N ) ) ) |
18 |
2 15 2
|
subdid |
|- ( N e. NN0 -> ( N x. ( ( N ^ 2 ) - N ) ) = ( ( N x. ( N ^ 2 ) ) - ( N x. N ) ) ) |
19 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
20 |
19
|
oveq2i |
|- ( N ^ 3 ) = ( N ^ ( 2 + 1 ) ) |
21 |
|
2nn0 |
|- 2 e. NN0 |
22 |
21
|
a1i |
|- ( N e. NN0 -> 2 e. NN0 ) |
23 |
2 22
|
expp1d |
|- ( N e. NN0 -> ( N ^ ( 2 + 1 ) ) = ( ( N ^ 2 ) x. N ) ) |
24 |
20 23
|
eqtrid |
|- ( N e. NN0 -> ( N ^ 3 ) = ( ( N ^ 2 ) x. N ) ) |
25 |
15 2
|
mulcomd |
|- ( N e. NN0 -> ( ( N ^ 2 ) x. N ) = ( N x. ( N ^ 2 ) ) ) |
26 |
24 25
|
eqtr2d |
|- ( N e. NN0 -> ( N x. ( N ^ 2 ) ) = ( N ^ 3 ) ) |
27 |
2
|
sqvald |
|- ( N e. NN0 -> ( N ^ 2 ) = ( N x. N ) ) |
28 |
27
|
eqcomd |
|- ( N e. NN0 -> ( N x. N ) = ( N ^ 2 ) ) |
29 |
26 28
|
oveq12d |
|- ( N e. NN0 -> ( ( N x. ( N ^ 2 ) ) - ( N x. N ) ) = ( ( N ^ 3 ) - ( N ^ 2 ) ) ) |
30 |
17 18 29
|
3eqtrd |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( ( N ^ 2 ) - N ) = ( ( N ^ 3 ) - ( N ^ 2 ) ) ) |
31 |
|
oddnumth |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( ( 2 x. k ) - 1 ) = ( N ^ 2 ) ) |
32 |
30 31
|
oveq12d |
|- ( N e. NN0 -> ( sum_ k e. ( 1 ... N ) ( ( N ^ 2 ) - N ) + sum_ k e. ( 1 ... N ) ( ( 2 x. k ) - 1 ) ) = ( ( ( N ^ 3 ) - ( N ^ 2 ) ) + ( N ^ 2 ) ) ) |
33 |
|
3nn0 |
|- 3 e. NN0 |
34 |
33
|
a1i |
|- ( N e. NN0 -> 3 e. NN0 ) |
35 |
2 34
|
expcld |
|- ( N e. NN0 -> ( N ^ 3 ) e. CC ) |
36 |
35 15
|
npcand |
|- ( N e. NN0 -> ( ( ( N ^ 3 ) - ( N ^ 2 ) ) + ( N ^ 2 ) ) = ( N ^ 3 ) ) |
37 |
13 32 36
|
3eqtrd |
|- ( N e. NN0 -> sum_ k e. ( 1 ... N ) ( ( ( N ^ 2 ) - N ) + ( ( 2 x. k ) - 1 ) ) = ( N ^ 3 ) ) |