Description: Shorter proof of eluzp1l . (Contributed by NM, 12-Sep-2005) (Revised by SN, 5-Jul-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sn-eluzp1l | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M < N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzp1 | |- ( M e. ZZ -> ( N e. ( ZZ>= ` ( M + 1 ) ) <-> ( N e. ZZ /\ M < N ) ) ) |
|
| 2 | 1 | simplbda | |- ( ( M e. ZZ /\ N e. ( ZZ>= ` ( M + 1 ) ) ) -> M < N ) |