Metamath Proof Explorer


Theorem elvvuni

Description: An ordered pair contains its union. (Contributed by NM, 16-Sep-2006)

Ref Expression
Assertion elvvuni AV×VAA

Proof

Step Hyp Ref Expression
1 elvv AV×VxyA=xy
2 vex xV
3 vex yV
4 2 3 uniop xy=xy
5 2 3 opi2 xyxy
6 4 5 eqeltri xyxy
7 unieq A=xyA=xy
8 id A=xyA=xy
9 7 8 eleq12d A=xyAAxyxy
10 6 9 mpbiri A=xyAA
11 10 exlimivv xyA=xyAA
12 1 11 sylbi AV×VAA