Metamath Proof Explorer


Theorem elxp2

Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004) (Proof shortened by JJ, 13-Aug-2021)

Ref Expression
Assertion elxp2 AB×CxByCA=xy

Proof

Step Hyp Ref Expression
1 ancom A=xyxByCxByCA=xy
2 1 2exbii xyA=xyxByCxyxByCA=xy
3 elxp AB×CxyA=xyxByC
4 r2ex xByCA=xyxyxByCA=xy
5 2 3 4 3bitr4i AB×CxByCA=xy