Metamath Proof Explorer


Theorem elxpcbasex2

Description: A non-empty base set of the product category indicates the existence of the second factor of the product category. (Contributed by Zhi Wang, 8-Oct-2025) (Proof shortened by SN, 15-Oct-2025)

Ref Expression
Hypotheses elxpcbasex1.t T = C × c D
elxpcbasex1.b B = Base T
elxpcbasex1.x φ X B
Assertion elxpcbasex2 φ D V

Proof

Step Hyp Ref Expression
1 elxpcbasex1.t T = C × c D
2 elxpcbasex1.b B = Base T
3 elxpcbasex1.x φ X B
4 reldmxpc Rel dom × c
5 4 1 2 elbasov X B C V D V
6 3 5 syl φ C V D V
7 6 simprd φ D V