Metamath Proof Explorer


Theorem emptyal

Description: On the empty domain, any universally quantified formula is true. (Contributed by Wolf Lammen, 12-Mar-2023)

Ref Expression
Assertion emptyal ¬ x x φ

Proof

Step Hyp Ref Expression
1 emptyex ¬ x ¬ x ¬ φ
2 alex x φ ¬ x ¬ φ
3 1 2 sylibr ¬ x x φ