Metamath Proof Explorer


Theorem emptyex

Description: On the empty domain, any existentially quantified formula is false. (Contributed by Wolf Lammen, 21-Jan-2024)

Ref Expression
Assertion emptyex ¬ x ¬ x φ

Proof

Step Hyp Ref Expression
1 trud φ
2 1 eximi x φ x
3 2 con3i ¬ x ¬ x φ