Metamath Proof Explorer


Theorem en1b

Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by Mario Carneiro, 17-Jan-2015) Avoid ax-un . (Revised by BTernaryTau, 24-Sep-2024)

Ref Expression
Assertion en1b A1𝑜A=A

Proof

Step Hyp Ref Expression
1 en1 A1𝑜xA=x
2 id A=xA=x
3 unieq A=xA=x
4 unisnv x=x
5 3 4 eqtrdi A=xA=x
6 5 sneqd A=xA=x
7 2 6 eqtr4d A=xA=A
8 7 exlimiv xA=xA=A
9 1 8 sylbi A1𝑜A=A
10 id A=AA=A
11 eqsnuniex A=AAV
12 ensn1g AVA1𝑜
13 11 12 syl A=AA1𝑜
14 10 13 eqbrtrd A=AA1𝑜
15 9 14 impbii A1𝑜A=A